
T
H

E

TURN ON YOUR CREATIVITY

ARDUINO™

ISBN 978-3-645-65279-7

T
H

E

TURN ON YOUR CREATIVITY

ARDUINO™

This tutorial kit includes every-
thing you need for your first
steps in programming:
an original Arduino™ Uno,
breadboard, components, a
282-page manual and software.
With this kit you can build
successful projects and bring to
life your Arduino™.

ALREADY DONE YOUR EXPERIMENT
FOR THE DAY?
Whether you want to build a home auto-
mation system or an LED lamp with
changing colours – with the Arduino™
even beginners can successfully write their
first programs and implement their very
own ideas! In this tutorial kit you discover
the basics of electronics and Arduino™
programming and get step-by-step in-
structions to put your ideas into practice.

Programming with loops
Generating random numbers
A simple game
Stop-watch
Measuring voltages
LED dimmer
Switch-on and switch-off delay
Music with the Arduino™
Candlelight, courtesy of the
microcontroller

Monitoring exits
School bell
Keypad lock
Voltage plotter
Storage oscilloscope
Temperature switch
Romantic lights
Timer clock
Composing melodies
State machines
Capacitance meter
... and many more!

WITH THIS TUTORIAL KIT YOU
WILL PERFORM THE FOLLOWING
PROJECTS:

LIST OF THE COMPONENTS:
1 Arduino Uno
1 breadboard
2 push-buttons
1 NPN transistor BC548C
1 silicon diode 1N4148
1 piezo buzzer
1 red LED
1 green LED
2 yellow LEDs
3 resistors 1.5 kΩ
1 resistor 4.7 kΩ
1 resistor 47 kΩ
1 resistor 10 kΩ
1 trim potentiometer 10 kΩ PT10
1 capacitor 1 μF
1 insulated hookup wire ca. 1 m

Not suitable for
children under 14!

© 2014 Franzis Verlag GmbH, Richard-Reitzner-Allee 2, D-85540 Haar, Germany
Subject to innovation, errors and printing errors. 2014/01

In addition, you need: USB connection cable

Arduino™ is a registered trademark of
Arduino LLC and the associated companies.

TH
E

A

R
D

U
IN

O™
 TU

TO
R

IA
L

K
IT

65279-7 Manual_148x210x15_U1+U4_Layout 1 09.10.14 09:15 Seite 1

Turn on your Creativity

Franzis
Arduino

Tutorial
kit

TM

th
e

Ulli Sommer

Original
arduino uno
And 20 other
components
for 65 projects

2

© 2014 Franzis Verlag GmbH, Richard-Reitzner-Allee 2, 85540 Haar

ISBN: 978-3-645-65279-7

Translation and DTP: G&U Language & Publishing Services GmbH

Layout: bora-dtp

All circuits and programs depicted in this book are developed and tested with utmost care. Nonetheless, it is not

possible to rule out all errors in the book or in the software. Publisher and author are only liable in case of intent or

gross negligence according to legal regulation. Beyond that, publisher and author are only liable according to the

law on product liability concerning hazards to life, body, and health and the culpable violation of essential con-

tractual obligations. The damage claim for the violation of essential contractual obligations is limited to the con-

tract-specific, predictable damage, unless in cases of mandatory liability according to the law on product liability.

Dear customers!

This product was developed in compliance with the applicable European directives and therefore

carries the CE mark. Its authorized use is described in the instructions enclosed with it. In the event of

non-conforming use or modification of the product, you will be solely responsible for complying with

the applicable regulations. You should therefore take care to assemble the circuits as described in the

instructions. The product may only be passed on along with the instruction and this note.

Waste electrical products should not be disposed of with household waste. Please recycle where facilities

exist. Check with your local authority or retailer for recycling advice.

All rights reserved, including those of reprinting, reproduction and storage in electronical media. No part may

be reproduced and distributed on paper, on storage media, or in the Internet, especially as PDF, without the

publisher‘s prior written permission. Any attempt may be prosecuted. Hardware and software product names,

company names, and company logos mentioned in this book are generally registered trademarks and have to be

considered as such. For product names, the publisher uses mainly the spelling of the manufacturer.

ArduinoTM is a registered trademark of Arduino LLC and the associated companies.

Table of Contents

Preface� 7

1	 Microcontroller Basics� 10

1.1  |  Measuring� 12
1.2  |  Controlling� 12
1.3  |  Controlling with continuous adjustment� 13
1.4  |  Design and mode of operation� 14
1.5  |  Programming a Microcontroller� 16

2	 A Survey of Available Arduino Boards� 20

2.1  |  Arduino Mega� 22
2.2  |  Arduino Uno� 23
2.3  |  Arduino Leonardo� 24
2.4  |  Arduino Ethernet� 26
2.5  |  ArduPilot� 27
2.6  |  LilyPad� 28
2.7  |  USB adapter� 29

3	 Arduino Shields� 30

3.1  |  Arduino ProtoShield� 31
3.2  |  Ardumoto� 32
3.3  |  TellyMate� 33
3.4  |  XBee radio frequency modules� 35
3.5  |  Ethernet shield� 37

4 Franzis Arduino Tutorial Kit

4	 Components in the Tutorial Kit� 38

4.1  |  A survey of the components� 39
4.2  |  Arduino Uno� 40
4.3  |  Ports and LEDs of the Arduino Uno� 41
4.4  |  Power supply� 44
4.5  |  Reset button� 44
4.6  |  ISP port� 44
4.7  |  Safety notes� 45

5	 Use of the Components� 46

5.1  |  Jump wire� 47
5.2  |  Breadboard� 48
5.3  |  Push-buttons� 49
5.4  |  Resistors� 49
5.5  |  Capacitors� 54
5.6  |  Piezo buzzer� 56
5.7  |  LEDs� 56
5.8  |  Diode� 58
5.9  |  Transistors� 59

6	 Installation of the Programming Environment� 62

6.1  |  Installation on Windows� 63
6.2  |  Installation on Mac OS X� 71
6.3  |  Installation on Linux� 72

7	 Arduino Programming Environment� 74

5Table of Contents

8	 Your First Arduino Program� 78

8.1  |  What did we do?� 82

9	 Arduino Programming Basics� 86

9.1  |  Bits and Bytes� 87
9.2  |  Structure of a Program� 88
9.3  |  Our second Arduino Program� 92
9.4  |  Getting Started with Arduino Programming� 95

10	More Experiments with the Arduino� 178

10.1  |  LED dimmer� 180
10.2  |  Soft flasher� 184
10.3  |  Debouncing buttons� 189
10.4  |  A simple switch-on delay� 195
10.5  |  A simple switch-off delay� 197
10.6  |  LEDs� 199
10.7  |  Switching large consumers� 202
10.8  |  Using the PWM Pins as DAC� 206
10.9  |  Music’s in the air� 212
10.10  |  Romantic Candlelight,
	 Courtesy of the Microcontroller� 217
10.11  |  Surveillance at the Exit for Staff Members� 220
10.12  |  An Arduino Clock� 223
10.13  |  School Bell Program� 225
10.14  |  Keypad Lock� 230
10.15  |  Capacitance meter
	 with auto-range function� 235

6 Franzis Arduino Tutorial Kit

10.16  |  Reading potentiometers and trimmers
	 the professional way� 239
10.17  |  State Machines� 242
10.18  |  6-channel voltmeter� 247
10.19  |  Programming Your Own Voltage Plotter� 250
10.20  |  Arduino Storage Oscilloscope� 253
10.21  |  StampPlot: a professional data logger –
	 free of charge!� 255
10.22  |  Controlling the Arduino Pins
	 via the Arduino Ports Program� 261
10.23  |  Temperature Switch� 264

11	The Fritzing Program� 268

12	The Processing Program� 270

13	Appendix� 274

13.1  |  Electrical quantities� 275
13.2  |  ASCII Table� 277

Preface

With many microcontroller systems, you have to work
through countless data sheets that are incomprehensible
for beginners. The programming interfaces are very com-
plex and devised for professional developers with years
of experience in programming microcontrollers. Thus, the
access to the world of microcontrollers is unnecessarily
made complicated.

The Arduino system, however, is an easily comprehen-
sible open-source platform that is easy to understand. It
is based on a microcontroller board with an Atmel AVR
controller and a simple programming environment. For
the human-machine interaction, you can attach a variety
of analog and digital sensors that capture ambient quan-
tities and pass the data to the microcontroller where they
are processed. The program causes the creation of new
analog or digital output data. There is no limit to the cre-
ativity of the developer. Whether you want to build a con-
trol system for your home or a beautiful LED lamp with
changing colours: The Arduino allows even beginners
from another background to write functional programs
and to put their own ideas into practise.

The smooth cooperation of hardware and software is
the basis for »physical computing« – the linking of the real
world to the bits-and-bytes world of the microcontroller.

This tutorial kit conveys the basics of electronics and
Arduino programming and shows in a plain way how to
implement your own ideas.

Ulli Sommer

8 Franzis Arduino Tutorial Kit

The CD in the Tutorial Kit
This tutorial kit contains a CD with several programs,
tools, data sheets, and examples. The CD is intended to
help you in working with this book. All examples in this
book are contained on the CD as well.

The contents of the CD

©© Arduino IDE (Integrated Development Environment)
©© Sample program code
©© Several tools
©© Data sheets
©© Circuit diagrams

GPL (General Public Licence)
You can share your own programs on the internet with
other users. The sample programs are provided under the
open-source GPL licence (General Public Licence). This
means that you have the right to modify, publish, and
share the programs according to the conditions of the
GPL, provided that you make them available under the
same licence terms.

The contents
of the CD

9Preface

System Requirements
©© Windows XP (32- or 64-bit) or newer; or:
©© Linux (32- or 64-bit); or:
©© Mac OS X.
©© CD drive
©© Java

More information can be found on the following web-
sites:

©© www.arduino.cc
©© www.fritzing.org
©© www.processing.org

Updates and Support
The Arduino IDE is continually developed further. You can
download any updates free of charges at the following
website:

hptt://arduino.cc

Further reading

Warning!  Eye protection in handling LEDs

Never look directly to an LED at a short distance! This could damage your retina! This
is especially true for bright LEDs in a clear housing und even more for Power LEDs. The
perceived brightness of white, blue, purple, and ultraviolet LEDs gives a false impres­
sion of the real danger for your eyes. Always exercise extreme caution when using con­
vergent lenses. Operate any LEDs according to the instructions, and never use higher
currents.

Turn on your Creativity

Franzis
Arduino

More
Experiments

with the
Arduino

10

Now that you have worked through the fundaments
and made yourself familiar with programming the Ardui-
no, you can start with hands-on experiments. The follow-
ing projects build up on the basic knowledge you have
gained in the previous chapter and extend it with new
functions and programming options.

It is assumed that you already understand the pro-
gram statements described so far, so you can implement
the examples.

The basic mode of operation is given for all the exam-
ples, but there will be no further explanation of familiar
statements. If you do not have a firm grasp on some the
commands, you shall tackle them again.

In most of the following experiments, you will need
the breadboard and the components included in the tu-
torial kit. The circuits are deliberately kept simple. You can
easily follow the current flow on the breadboard without
a circuit diagram.

Even more
experiments with
the Arduino

Work with
the breadboard

180 Franzis Arduino Tutorial Kit

10.1  |  LED dimmer
In the previous chapter, you have become acquainted
with the analog PWM output and analogWrite. This al-
lows you to build a dimmer that controls the brightness
of an LED. Use a red LED at analog output 3 for the next
experiment. If you want to use more powerful LEDs like
those by Luxeon, you have to add a transistor to the ana-
log output in order to increase the small current of the
microcontroller to the amount needed by the LED.

The example project already uses a transistor as an
amplifier and shows how to use it on a digital PWM out-
put. In this experiment, we only use the low-current LED
included in the tutorial kit, but you can apply a greater
load to the collector circuit like the high-power LED men-
tioned above or a small lightbulb for a flashlight (max.
100 mA). The push-buttons S1 (brighter) and S2 (darker)
control the duty cycle of the PWM output and thus the
brightness. The transistor relieves the digital pin. Only a
very small current (ca. 300 times smaller than the load)
flow to the base. This current is amplified by the transistor
that uses the small base current to switch the larger col-
lector current.

Build an LED
dimmer for your
living room

Required parts for
the experiment

©© 1 x microcontroller board Arduino Uno
©© 1 x red LED
©© 2 x push-buttons
©© 1 x transistor BC548C
©© 1 x 1.5 kW resistor
©© 1 x 4.7 kW resistor
©© 5 x jump wire, ca. 10 cm
©© 2 x jump wire, ca. 5 cm

18110  More Experiments with the Arduino

Figure 10.1:  Diagram of the set-up for an LED dimmer with transistor

Example:  LED dimmer

// Franzis Arduino
// LED-Dimmer

int brightness=0;
int SW1=3;
int SW2=2;
int LED=11;

void setup()
{
 pinMode(SW1,INPUT);
 digitalWrite(SW1,HIGH);
 pinMode(SW2,INPUT);
 digitalWrite(SW2,HIGH);
}

Time needed: 15 min
Difficulty: 2

    

182 Franzis Arduino Tutorial Kit

void loop()
{
 if(!digitalRead(SW1)&&digitalRead(SW2))
 {
 if(brightness<255)brightness++;
 analogWrite(LED,brightness);
 delay(10);
 }
 else if(digitalRead(SW1)&&!digitalRead(SW2))
 {
 if(brightness>0)brightness--;
 analogWrite(LED,brightness);
 delay(10);
 }
}

This example also demonstrates the usage of logical
operators like ! and && in an if query. These comparison
operations cause the push-buttons to lock each other, so
that nothing happens when you press both of them si-
multaneously.

if(!digitalRead(SW1)&&digitalRead(SW2))
{
 // statement 1
}
else if(digitalRead(SW1)&&!digitalRead(SW2))
{
 // statement
}

The preceding program snippet can be verbalized as
follows: If SW1 is low (0 V because the button is pressed
and the pull-up resistor is active and we thus have a digi-

18310  More Experiments with the Arduino

tal value of 0) and SW2 is high (the button is not pressed
and the pull-up resistor is active, thus the digital value is
1), then execute the first block. If SW1 is high (not pressed,
5 V are applied, thus the digital value is 1) and SW2 is low
(pressed, digital value is 0) then execute the code after
else if.

In short form:

If SW1 = 0 and SW2 = 1 then execute statement 1

If the first condition is not true, then test the following:

If SW1 = 1 and SW2 = 0 then execute statement 2

In the statements we increment (++) or decrement
(--) the variable brightness. To avoid an overflow, the
less-than query (<) and the greater-than query (>) provide
an upper limit of 255 and a lower one of 0.

No matter how long you press the button, the value
of the variable will never exceed 255 or drop below 0. In
order to provide a more convenient way to set the bright-
ness, a delay of 10 ms is added. Every pass takes 10 ms,
which makes the adjustment of the brightness very com-
fortable and simple.

When you increase the delay value, the dimming
process will be slower when you press a button. If you
remove delay completely, the variable brightness is
incremented or decremented so rapidly that you cannot
observe any dimming. Instead, it looks as if the LED was
turned on or off.

A delay makes for
a more pleasant
dimming experience

184 Franzis Arduino Tutorial Kit

10.2  |  Soft flasher
With the sine function, you can coax the analog output
to issue a sinusoidal signal. This provides for a smooth in-
crease and decrease in the brightness of the LED which
comes in handy for some applications. This slow variation
in the brightness looks as if the board had a beating heart.

The set-up is the same as in the previous example (see
Fig. 10.1). The main program runs through a loop that
counts from 0 to 255. The corresponding values to the
numbers are retrieved from the array with the sine func-
tion table and passed as PWM values to the analog out-
put via analogWrite. Using a table is significantly faster
than calculating the values at run time.

Example:  Sine wave blinker

// Franzis Arduino
// Sine wave blinker

byte i=0;
int LED=11;

byte Data[] = {128,131,134,137,140,144,147,150,153,
156,159,162,165,168,171,174,177,180,182,185,188,191,
194,196,199,201,204,206,209,211,214,216,218,220,222,
224,226,228,230,232,234,236,237,239,240,242,243,244,
246,247,248,249,250,251,251,252,253,253,254,254,254,
255,255,255,255,255,255,255,254,254,253,253,252,252,
251,250,249,248,247,246,245,244,242,241,240,238,236,
235,233,231,229,227,225,223,221,219,217,215,212,210,
208,205,203,200,197,195,192,189,187,184,181,178,175,
172,169,167,164,160,157,154,151,148,145,142,139,136,
133,130,126,123,120,117,114,111,108,105,102,99,96,
14,12,11,10,9,8,7,6,5,4,4,3,3,2,2,1,1,1,1,1,1,1,2,

More lighting effects
by using the sine
function

Time needed: 10 min
Difficulty: 2

    

18510  More Experiments with the Arduino

2,2,3,3,4,5,5,6,7,8,9,10,12,13,14,16,17,19,20,22,
24,26,28,30,32,34,36,38,40,42,45,47,50,52,55,57,60,
62,65,68,71,74,76,79,82,85,88,91,94,97,100,103,106,
109,112,116,119,122,125,128};

void setup()
{
 // This time, we do not have to do anything
 // in here …
}

void loop()
{
 for(i=0;i<255;i++)
 {
 analogWrite(LED,Data[i]);
 delay(5);
 }
}

The program uses the dynamic byte Array Data[]
whose values are assigned in the braces. It is called a dy-
namic array because its size is determined by the number
of values defined in the braces. As we have put 256 values
into the braces, the array has a size of 256 bytes. You can
access the single values in the array by the index in the
range from 0 to 255.

The code fetches one value (Data[i]) at a time and
writes it to the hardware using analogWrite, thereby
changing the duty cycle of the PWM output.

By the way: This is only a quasi-analog output. The
statement is called analogWrite, but we only change
the duty cycle of the output. Without a filter at the output,

How to change the
duty cycle of the
PWM output

186 Franzis Arduino Tutorial Kit

we just get a simple PWM signal and not a true analog sig-
nal as it is issued by a real digital/analog converter (DAC).
The next experiment will show how you can generate a
real analog signal out of a PWM signal.

Figure 10.2:  The program Sinus Tab that calculates the values
of the sine wave table

The little Visual Basic .NET program Sinus Tab calcu-
lates the sine wave table that you can directly insert into
your programs. You can find the program on the CD in-
cluded in the tutorial kit.

If you happen to own an oscilloscope you can attach
an RC circuit to the analog output (instead of the LED)
and view the sinusoidal progress on the monitor of the
device. An RC circuit with a 10 kW resistor and a 1 mF ca-
pacitor will suffice.

Variants with an
oscilloscope

18710  More Experiments with the Arduino

Figure 10.3:  Set-up of the RC circuit. The resistor is connected to
analog output 11 on the Arduino board. The negative terminal
of the capacitor is attached to ground. This circuit filters the PWM
signal so that only the envelope of the sine function is visible on the
oscilloscope.

Figure 10.4:  The result on the oscilloscope after attaching the RC
circuit

188 Franzis Arduino Tutorial Kit

Tip  More information about envelopes of signals and RC
circuits can be found at:

http://en.wikipedia.org/wiki/Envelope_detector
http://en.wikipedia.org/wiki/RC_circuit

The second example shows how you can calculate the
sine function for the sine wave blinker in the program. In
the previous example, we have used a table, now we will
carry out the calculation directly on the microcontroller.
The program is much smaller, but the calculation puts a
lot of stress on the microcontroller so that the run time is
significantly increased.

The sin() function accepts a value in radians. First,
you have to convert angular degrees to radians, which is
done by x*(pi/180). When you multiply the result with
255 (PWM range from 0 to 255) you scale the sine func-
tion to the range from 0 to 255.

Example:  Sine wave blinker with sine function

// Franzis Arduino
// Soft blinker with sine function

int ledPin = 11;
float Val;
int led;

void setup()
{
 pinMode(ledPin, OUTPUT);
}

Calculating the
sine function in the
program

Time needed: 10 min
Difficulty: 2

    

18910  More Experiments with the Arduino

void loop()
{
 for (int x=0; x<180; x++)
 {
 Val = (sin(x*(3.1416/180)));
 led = int(Val*255);
 analogWrite(ledPin, led);
 delay(10);
 }
}

10.3  |  Debouncing buttons
Due to their mechanical composition, push-buttons exhibit
the characteristic trait of »bouncing«. Whenever you press or
release the button, the signal does not change immediately
to high or low, but issues short impulses that give the im-
pression of someone rapidly operating the button.

As these impulses are too short, you cannot see this ef-
fect when you use the button to switch on or off a light
bulb. However, the controller retrieves the button state so
fast that he gains the impression of a button that is rapidly
pressed and released. In order to determine a steady state,
the button has to be debounced by means of the software.

Figure 10.5:  This is the impression the microcontroller gains at the
digital input due to the bouncing effect of a button

How to debounce
push-buttons via
the software

190 Franzis Arduino Tutorial Kit

The problem can be avoided by retrieving the state
two times with a short delay between the readings. Only
when the signal level at the second reading is identical
to the level at the first try, you can act on the assumption
that the button was actually pressed (or depressed) and
the current digital value on the input is correct. The delay
should be in the range from 20 to 100 ms.

Figure 10.6:  Diagram of the set-up for an LED dimmer with tran-
sistor

Required parts for
the experiment

©© 1 x microcontroller board Arduino Uno
©© 1 x breadboard
©© 1 x push-buttons
©© 2 x jump wire, ca. 5 cm

19110  More Experiments with the Arduino

Example:  Debouncing a push-button V1

// Franzis Arduino
// Debouncing a push-button V1

int SW1=12;

void setup()
{
 Serial.begin(9600);
 pinMode(SW1,INPUT);
 digitalWrite(SW1,HIGH);
 Serial.println("Debouncing a push-button V1");
}

void loop()
{
 if(!digitalRead(SW1))
 {
 delay(50);
 if(!digitalRead(SW1))
 {
 Serial.println("Button SW1 has been
 pressed");
 }
 }
}

In this code, text is output to Terminal when the but-
ton is pressed. The state of the button is read (query for a
low state), and after a short delay (50 ms) it is read again.
If it is still low, the text is printed to Terminal.

The drawback of this method is, that the programs is
called so often until the button is released. Another pos-
sibility is to execute the program code and then wait for

Time needed: 10 min
Difficulty: 2

    

Simple debouncing

192 Franzis Arduino Tutorial Kit

the button to be released. The program runs through the
while(!digitalRead(SW1)); loop until the button is
pressed no longer.

Example:  Debouncing a push-button V2

// Franzis Arduino
// Debouncing a push-button V2

byte i=0;
int SW1=12;

void setup()
{
 Serial.begin(9600);
 pinMode(SW1,INPUT);
 digitalWrite(SW1,HIGH);
 Serial.println("Debouncing a push-button V2");
}

void loop()
{
 if(!digitalRead(SW1))
 {
 delay(50);
 if(!digitalRead(SW1))
 {
 i++;
 Serial.print("Button SW1 was pressed ");
 Serial.print(i,DEC);
 Serial.println("x times");
 do{
 }while(!digitalRead(SW1));
 }
 }
}

Time needed: 10 min
Difficulty: 2

    

19310  More Experiments with the Arduino

The reverse behaviour can be obtained by placing the
do while loop at the beginning. Now the code will be
executed only after the button is released.

Example:  Debouncing a push-button V3

// Franzis Arduino
// Debouncing a push-button V3

byte i=0;
int SW1=12;

void setup()
{
 Serial.begin(9600);
 pinMode(SW1,INPUT);
 digitalWrite(SW1,HIGH);
 Serial.println("Debouncing a push-button V3");
}

void loop()
{
 if(!digitalRead(SW1))
 {
 delay(50);
 if(!digitalRead(SW1))
 {
 do{
 }while(!digitalRead(SW1));
 i++;
 Serial.print("Button SW1 was pressed ");
 Serial.print(i,DEC);
 Serial.println("x times");
 }
 }
}

Time needed: 10 min
Difficulty: 2

    

194 Franzis Arduino Tutorial Kit

The following code provides an even better (and near-
ly perfect) solution. It is an amalgamation of the previous
example. Furthermore, the results are not only retrieved
twice but also compared. The value of digitalRead has
to be identical at two points in a given time period in or-
der to run the code. As a further addition, we turn on or
off LED L on the Arduino board.

Example:  Debouncing a push-button V4

// Franzis Arduino
// Debouncing a push-button V4

byte i=0;
int SW1=12;
int LED=13;
int TOG=0;
byte value_1, value_2=0;

void setup()
{
 Serial.begin(9600);
 pinMode(SW1,INPUT);
 digitalWrite(SW1,HIGH);
 pinMode(LED,OUTPUT);
 Serial.println("Debouncing a push-button V4");
}

void loop()
{
 value_1=digitalRead(SW1);
 if(!value_1)
 {
 delay(50);
 value_2=digitalRead(SW1);

Debouncing for
advanced learners

Time needed: 10 min
Difficulty: 3

    

19510  More Experiments with the Arduino

 if(!value_2)
 {
 i++;
 Serial.print("Button SW1 was pressed ");
 Serial.print(i,DEC);
 Serial.println("x times");
 if(TOG!=0)TOG=0;else TOG=1;
 digitalWrite(LED,TOG);
 do{
 }while(!digitalRead(SW1));
 }
 }
}

10.4  |  A simple switch-on delay
As the name implies, a switch-on delay switches on a con-
sumer (in our case, the LED L) with a delay after pressing
the button. In our example, the delay is implemented by
the delay() command and a counting loop. When you
press the button, a flag stores the state und increments
the variable i. When i exceeds the preset amount of mil-
liseconds (in this case 3000 ms or 3 s), LED L is turned on
and the program gets »trapped« in the while(1) loop.

As in the examples about the debouncing of push-but-
tons, the button is attached to digital pin 12 and ground. Now
you have to press the push-button once and then release
it in order to leave do{}while(!digitalRead(SW1));.

In querying the button state, the flag is set to 1. Now
the incrementation of the variable i begins. When it ex-
ceeds 3000, the LED is turned on. Due to delay(1), the
increase of i by 1 only happens every millisecond.

A simple switch-on
delay switches on
a consumer with a
delay after pressing
the button

196 Franzis Arduino Tutorial Kit

Example:  Switch-on delay

// Franzis Arduino
// Switch-on delay

int SW1=12;
int value_1, value_2=0;
int LED=13;
byte Flag=0;
int i=0;

void setup()
{
 pinMode(SW1,INPUT);
 digitalWrite(SW1,HIGH);
 pinMode(LED,OUTPUT);
}

void loop()
{
 value_1=digitalRead(SW1);

 if(!value_1)
 {
 delay(50);
 value_2=digitalRead(SW1);
 if(!value_2)
 {
 Flag=1;
 do{
 }while(!digitalRead(SW1));
 }
 }

Time needed: 10 min
Difficulty: 2

    

19710  More Experiments with the Arduino

 if(Flag==1)i++;
 if(i>3000)
 {
 digitalWrite(LED,HIGH);
 while(1);
 }
 delay(1);
}

10.5  |  A simple switch-off delay
The counterpart of the switch-on delay is the switch-off
delay. With this, a consumer is turned off with a preset
delay after pressing the button. The procedure is identical
to that of the switch-on delay, but here the variable i is
decremented instead of incremented.

Example:  Switch-off delay

// Franzis Arduino
// Switch-off delay

int SW1=12;
int value_1, value_2=0;
int LED=13;
byte Flag=0;
int i=3000;

void setup()
{
 pinMode(SW1,INPUT);
 digitalWrite(SW1,HIGH);

A switch-off delay
switches off a con­
sumer after a preset
time

Time needed: 10 min
Difficulty: 2

    

198 Franzis Arduino Tutorial Kit

 pinMode(LED,OUTPUT);
 digitalWrite(LED,HIGH);
}

void loop()
{
 value_1=digitalRead(SW1);

 if(!value_1)
 {
 delay(50);
 value_2=digitalRead(SW1);
 if(!value_2)
 {
 Flag=1;
 do{
 }while(!digitalRead(SW1));
 }
 }

 if(Flag==1)i--;
 if(i==0)
 {
 digitalWrite(LED,LOW);
 while(1);
 }
 delay(1);
}

19910  More Experiments with the Arduino

10.6  |  LEDs
In most of the previously described applications, one or
more LEDs were used as output to test the software. You
may have asked yourself how you have to calculate the
series resistor in cases like these.

An LED is very much like a normal silicon diode, but
it is operated in conducting direction (anode to the posi-
tive pole and cathode to the negative). There is a voltage
drop along the LED, the amount of which depends on
the colour (between 1.6 and 4 V).

The exact voltage is given in the data sheet for the
LED and is called V

forward
. The LED also needs some current

so that it can light up. This current is called I
forward

 in the
data sheets. In this tutorial kit, we only use low-current
LEDs with a maximum operating current of 2 mA.

An example for the calculation:

Iforward = 2 mA (low-current LED)

Vforward = 2.2 V

Operating voltage of the Arduino Vcc = 5 V

R = x W (the quantity we want to determine)

Use a series resistor of the E12 series with a little high-
er value, namely 1.5 kW, to make sure the LED will not be
damaged.

Calculating
the series resistors
for LEDs

200 Franzis Arduino Tutorial Kit

As a hands-on example, we will build an LED double
flasher: The LEDs attached to the digital pins 10 and 11
blink alternately three times each. This simulates the light
effect of the beacon light on an ambulance car.

Figure 10.7:  Diagram of the circuit

Double-flash LED
signal

Required parts for
the experiment

©© 1 x microcontroller board Arduino Uno
©© 1 x breadboard
©© 2 x red LED
©© 2 x 1.5 kW resistors
©© 4 x jump wire, ca. 10 cm

20110  More Experiments with the Arduino

Example:  Double flasher

// Franzis Arduino
// Double flasher

int LED_1=10;
int LED_2=11;
int i=0;
int TOG=0;

void setup()
{
 pinMode(LED_1,OUTPUT);
 pinMode(LED_2,OUTPUT);
}

void loop()
{
 for(i=0;i<3;i++)
 {
 if(TOG==0)TOG=HIGH;else TOG=LOW;
 digitalWrite(LED_1,TOG);
 delay(40);
 }
 TOG=0
 digitalWrite(LED_1,LOW);
 delay(100);

 for(i=0;i<3;i++)
 {
 if(TOG==0)TOG=HIGH;else TOG=LOW;
 digitalWrite(LED_2,TOG);
 delay(40);
 }
 digitalWrite(LED_2,LOW);
 delay(100);

Time needed: 10 min
Difficulty: 3

    

202 Franzis Arduino Tutorial Kit

 for(i=0;i<3;i++)
 {
 if(TOG==0)TOG=HIGH;else TOG=LOW;
 digitalWrite(LED_1,TOG);
 delay(40);
 }

 digitalWrite(LED_1,LOW);
 delay(500);
}

The program runs through the first for loop and lets
the LED at digital pin 10 blink three times. Then it enters
the second for loop and causes the second LED to blink
three times. After that, it waits for 500 ms and starts again.

10.7  |  Switching large consumers
If you need more current than our port can provide (max.
±40 mA), you will have to amplify it by a transistor as you
did in the dimmer project. Let us have a more detailed
look at transistors and their properties.

In a transistor, a small current (I
B
) flows to the base and

provides for a larger collector current (I
C
). The amplifica-

tion (expressed as the so called h
FE

 value) of small-signal
transistors amounts to a factor of 100 to 1000, depending
on the model. The transistor BC548C that we use in our
experiments has an average amplification factor of about
300. A base current of 0.1 mA will therefore result in a col-
lector current of 30 mA. The collector current for our tran-
sistor must not exceed 100 mA. Again, we will use an LED
with a series resistor for demonstration purposes.

Operating mode
of a transistor

20310  More Experiments with the Arduino

Figure 10.8:  A transistor at the digital output of the Arduino micro
controller (mC); I

B
 = base current, I

C
 = collector current. Both base

and collector current flow through the emitter. The tutorial kit
contains low-current LEDs (I

forward
 = 2 mA), hence the large 1.5 kW

series resistor R2.

For the R1 resistor, we choose a value between 1 and
10 kW, depending on the application. With a BC548C
transistor a 10 kW resistor is sufficient to fully illuminate
an LED.

The resistor R3 serves to protect the base against inter-
ference. When you switch on the Arduino, the digital pins
have a high resistance because they are initialized as in-
puts. The base would be »up in the air«. To avoid this, we
attach a 220 to 470 kW resistor directly to the base and
against ground. This makes sure that the transistor con-
nects through only when a larger current flows to the base.

The resistor serves
to protect the base
against interference

204 Franzis Arduino Tutorial Kit

Figure 10.9:  Pin configuration of the BC548 transistor (Source:
Vishay data sheet)

The more current the consumer needs, the more cur-
rent must flow to the base so that a larger collector cur-
rent is possible.

The collector current is calculated as follows:

IC = IB × hFE (transistor amplification factor)

The following circuit diagram shows a transistor con-
trolling a small relay. The resistance value of resistor R5
may be 1 to 22 kW, depending on the coil current. In
general you can use a 4.7 kW resistor because the transis-
tor works as a simple switch.

There is no interference-suppression resistor in this
circuit, but you can add one in case you experience any
problems. As in the previous example, you can use a
220 kW resistor between base and ground.

How to calculate
the collector current

20510  More Experiments with the Arduino

Button S1 uses R4 as an external pull-up resistor, where
R4 should have a resistance between 10 and 22 kW. Diode
D1 prevents the inductive voltage in the relay coil from
damaging the transistor when switching off. The induc-
tive voltage is polarised in the opposite direction of the
source. Thus the diode has to be inserted in a way that
short-circuits the inductive voltage. In this example, the
relay turns on lamp La1 when the digital pin is high (5 V).

Figure 10.10:  Relay at the digital pin of the Arduino

There are many different models of relays. They all have
potential-free contacts, i.e., the contact has no connection
to the microcontroller circuit whatsoever.

Relays have a poten­
tial-free contact

Turn on your Creativity

Franzis
Arduino
Appendix

... abbreviations,
quantities, and
units

13

On the following pages, you will find some useful ta-
bles for abbreviations, electrical quantities, units of mea-
surements and symbols.

13.1  |  Electrical quantities

You have to differentiate between quantities like voltage,
current, and resistance and the units of measurement for
these quantities (volt, ampere, and ohm). Every quantity
and every unit of measurement has its own abbreviation
that is used in formulas. This provides for a neat and clear
notation. For instance, you simply write »I = 1 A« instead
of »current = 1 ampere«.

276 Franzis Arduino Tutorial Kit

In this book, the following abbreviations are used:

Quantity Abbreviation Unit Abbreviation

Voltage V or U Volt V

Current I Ampere A

Resistance R Ohm W

Power P Watt W

Frequency f Hertz Hz

Time t Second s

Wave length l (lambda) Meter m

Inductance L Henry H

Capacitance C Farad F

Area A Square meter m²

27713  Appendix

13.2  |  ASCII Table

Symbol Decimal Hexa­
decimal

Binary Description

NUL 000 000 00000000 Null character

SOH 001 001 00000001 Start of header

STX 002 002 00000010 Start of text

ETX 003 003 00000011 End of text

EOT 004 004 00000100 End of transmission

ENQ 005 005 00000101 Enquiry

ACK 006 006 00000110 Acknowledgment

BEL 007 007 00000111 Bell

BS 008 008 00001000 Backspace

HAT 009 009 00001001 Horizontal tab

LF 010 00A 00001010 Line feed

VT 011 00B 00001011 Vertical tab

FF 012 00C 00001100 Form feed

CR 013 00D 00001101 Carriage return

SO 014 00E 00001110 Shift out

SI 015 00F 00001111 Shift in

DLE 016 010 00010000 Data link escape

DC1 017 011 00010001 Device control 1

DC2 018 012 00010010 Device control 2

DC3 019 013 00010011 Device control 3

DC4 020 014 00010100 Device control 4

NAK 021 015 00010101 Negative acknowledgment

SYN 022 016 00010110 Synchronous idle

ETB 023 017 00010111 End of transmission block

CAN 024 018 00011000 Cancel

278 Franzis Arduino Tutorial Kit

Symbol Decimal Hexa­
decimal

Binary Description

EM 025 019 00011001 End of medium

SUB 026 01A 00011010 Substitute

ESC 027 01B 00011011 Escape

FS 028 01C 00011100 File separator

GS 029 01D 00011101 Group separator

RS 030 01E 00011110 Request to send,
record separator

US 031 01F 00011111 Unit separator

SP 032 020 00100000 Space

! 033 021 00100001 Exclamation mark

“ 034 022 00100010 Double quote

035 023 00100011 Number sign

$ 036 024 00100100 Dollar sign

% 037 025 00100101 Percent

& 038 026 00100110 Ampersand

‘ 039 027 00100111 Single quote

(040 028 00101000 Left opening parenthesis

) 041 029 00101001 Right closing parenthesis

* 042 02A 00101010 Asterisk

+ 043 02B 00101011 Plus

, 044 02C 00101100 Comma

- 045 02D 00101101 Minus or dash

. 046 02E 00101110 Dot

CHAR DEC HEX BIN Description

/ 047 02F 00101111 Forward slash

0 048 030 00110000

1 049 031 00110001

2 050 032 00110010

27913  Appendix

Symbol Decimal Hexa­
decimal

Binary Description

3 051 033 00110011

4 052 034 00110100

5 053 035 00110101

6 054 036 00110110

7 055 037 00110111

8 056 038 00111000

9 057 039 00111001

: 058 03A 00111010 Colon

; 059 03B 00111011 Semicolon

< 060 03C 00111100 Less than

= 061 03D 00111101 Equal

> 062 03E 00111110 Greater than

? 063 03F 00111111 Question mark

@ 064 040 01000000 At symbol

A 065 041 01000001

B 066 042 01000010

C 067 043 01000011

D 068 044 01000100

E 069 045 01000101

F 070 046 01000110

G 071 047 01000111

H 072 048 01001000

I 073 049 01001001

J 074 04A 01001010

K 075 04B 01001011

L 076 04C 01001100

M 077 04D 01001101

N 078 04E 01001110

280 Franzis Arduino Tutorial Kit

Symbol Decimal Hexa­
decimal

Binary Description

O 079 04F 01001111

P 080 050 01010000

Q 081 051 01010001

R 082 052 01010010

S 083 053 01010011

T 084 054 01010100

U 085 055 01010101

V 086 056 01010110

W 087 057 01010111

X 088 058 01011000

Y 089 059 01011001

Z 090 05A 01011010

[091 05B 01011011 Left opening bracket

\ 092 05C 01011100 Backslash

] 093 05D 01011101 Right closing bracket

^ 094 05E 01011110 Caret

CHAR DEC HEX BIN Description

_ 095 05F 01011111 Underscore

` 096 060 01100000

a 097 061 01100001

b 098 062 01100010

c 099 063 01100011

d 100 064 01100100

e 101 065 01100101

f 102 066 01100110

g 103 067 01100111

28113  Appendix

Symbol Decimal Hexa­
decimal

Binary Description

h 104 068 01101000

i 105 069 01101001

j 106 06A 01101010

k 107 06B 01101011

l 108 06C 01101100

m 109 06D 01101101

n 110 06E 01101110

o 111 06F 01101111

p 112 070 01110000

q 113 071 01110001

r 114 072 01110010

s 115 073 01110011

t 116 074 01110100

u 117 075 01110101

v 118 076 01110110

w 119 077 01110111

x 120 078 01111000

y 121 079 01111001

z 122 07A 01111010

{ 123 07B 01111011 Left opening brace

| 124 07C 01111100 Vertical bar

} 125 07D 01111101 Right closing brace

~ 126 07E 01111110 Tilde

DEL 127 07F 01111111 Delete

T
H

E

TURN ON YOUR CREATIVITY

ARDUINO™

ISBN 978-3-645-65279-7

T
H

E
TURN ON YOUR CREATIVITY

ARDUINO™

This tutorial kit includes every-
thing you need for your first
steps in programming:
an original Arduino™ Uno,
breadboard, components, a
282-page manual and software.
With this kit you can build
successful projects and bring to
life your Arduino™.

ALREADY DONE YOUR EXPERIMENT
FOR THE DAY?
Whether you want to build a home auto-
mation system or an LED lamp with
changing colours – with the Arduino™
even beginners can successfully write their
first programs and implement their very
own ideas! In this tutorial kit you discover
the basics of electronics and Arduino™
programming and get step-by-step in-
structions to put your ideas into practice.

Programming with loops
Generating random numbers
A simple game
Stop-watch
Measuring voltages
LED dimmer
Switch-on and switch-off delay
Music with the Arduino™
Candlelight, courtesy of the
microcontroller

Monitoring exits
School bell
Keypad lock
Voltage plotter
Storage oscilloscope
Temperature switch
Romantic lights
Timer clock
Composing melodies
State machines
Capacitance meter
... and many more!

WITH THIS TUTORIAL KIT YOU
WILL PERFORM THE FOLLOWING
PROJECTS:

LIST OF THE COMPONENTS:
1 Arduino Uno
1 breadboard
2 push-buttons
1 NPN transistor BC548C
1 silicon diode 1N4148
1 piezo buzzer
1 red LED
1 green LED
2 yellow LEDs
3 resistors 1.5 kΩ
1 resistor 4.7 kΩ
1 resistor 47 kΩ
1 resistor 10 kΩ
1 trim potentiometer 10 kΩ PT10
1 capacitor 1 μF
1 insulated hookup wire ca. 1 m

Not suitable for
children under 14!

© 2014 Franzis Verlag GmbH, Richard-Reitzner-Allee 2, D-85540 Haar, Germany
Subject to innovation, errors and printing errors. 2014/01

In addition, you need: USB connection cable

Arduino™ is a registered trademark of
Arduino LLC and the associated companies.

TH
E

A

R
D

U
IN

O™
 TU

TO
R

IA
L

K
IT

65279-7 Manual_148x210x15_U1+U4_Layout 1 09.10.14 09:15 Seite 1

	The Franzis Arduino Tutorial Kit

	Table of Contents
	Preface
	10 More experiments with the Arduino

	10.1 | LED dimmer
	10.2 | Soft flasher
	10.3 | Debouncing buttons
	10.4 | A simple switch-on delay
	10.5 | A simple switch-off delay
	10.6 | LEDs
	10.7 | Switching large consumers

	13 Appendix
	13.1 | Electrical quantities
	13.2 | ASCII Table

